1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
// MIT License
//
// Copyright (c) 2020 Ben
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
// © 2020 GitHub, Inc.
// Terms
// https://github.com/tempor1s/bktree-rs
use std::{char, cmp::min, collections::HashMap};

/// BKTree structure that is used to store word like structures
/// and perform "fuzzy" search on them to implement "do you mean"
/// functionality on them. Can perform said search on any term that implements
/// the distance trait. The default implementation is Osa distance.
#[derive(Default)]
pub struct BKTree<K, V>
where
    K: Distance,
{
    root: Option<BKTreeNode<K, V>>,
}

impl<K, V> BKTree<K, V>
where
    K: Distance,
{
    /// Create a new BK Tree with an empty root.
    pub fn new() -> BKTree<K, V> {
        BKTree { root: None }
    }

    /// Create a new tree from the items in a Vector.
    /// Useful for inserting a lot of items from a file etc.
    /// Vector requires a Vec of tuples of K, V pairs where K implements Distance trait
    #[allow(dead_code)]
    pub fn new_from_vec(items: Vec<(K, V)>) -> BKTree<K, V> {
        let mut tree = BKTree { root: None };

        for item in items {
            tree.insert(item.0, item.1);
        }

        return tree;
    }

    /// Add a new (key, value) pair into the BKTree.
    pub fn insert(&mut self, key: K, value: V) {
        // If the root exists, insert from there.
        if let Some(root) = &mut self.root {
            root.insert(key, value);
        } else {
            // otherwise, set the root to be a new BKTreeNode
            self.root = Some(BKTreeNode::new(key, value));
        }
    }

    /// Search for the closest Item to the key with a given tolerence. (Steps to get there)
    /// The return value is a tuple of 2 Vecs, where the first one has exact matches and the second
    /// are matches within the given tolerence.
    ///
    /// A match is approximate if the distance between key1 and key2 are less than the given tolerence.
    pub fn find(&self, key: &K, tolerence: usize) -> (Vec<&V>, Vec<&K>) {
        // if our root exists, search from the root
        return if let Some(root) = &self.root {
            root.find(&key, tolerence)
        } else {
            // if we can not find anything, return a tuple of empty vectors
            (vec![], vec![])
        };
    }

    pub fn dfs(&self) -> Vec<(&K, &V)> {
        let mut out = vec![];
        if let Some(ref root) = self.root {
            root.traverse(&mut out);
        }
        out
    }
}

#[derive(Debug)]
struct BKTreeNode<K, V>
where
    K: Distance,
{
    key: K,
    value: V,
    children: HashMap<usize, BKTreeNode<K, V>>,
}

impl<K, V> BKTreeNode<K, V>
where
    K: Distance,
{
    /// Create a new BK Tree Node with the given (K, V) pair and empty HashMap of children
    fn new(key: K, value: V) -> Self {
        BKTreeNode {
            key,
            value,
            children: HashMap::new(),
        }
    }

    /// Insert a new (key, value) pair into this nodes children
    fn insert(&mut self, key: K, value: V) {
        // Get the distance between the current nodes key and the given key
        let distance = self.key.distance(&key);
        // If the child exists, traverse and insert from there.
        if let Some(child) = self.children.get_mut(&distance) {
            child.insert(key, value);
        } else {
            // otherwise, insert the current node into the children and with the given distance
            self.children.insert(distance, BKTreeNode::new(key, value));
        }
    }

    /// Find a key in the given childrens nodes
    fn find(&self, key: &K, leniency: usize) -> (Vec<&V>, Vec<&K>) {
        // Create a new tuple of empty vectors for exact and close matches
        let (mut exact, mut close) = (vec![], vec![]);
        // Get the distance between the current nodes key and then passed in key.
        let current_distance = self.key.distance(&key);
        // If the current distance is 0, it means its an exact match so push it to our "exact" matches
        if current_distance == 0 {
            exact.push(&self.value);
        // Otherwise, if the value is less than our leniency then add it to the close matches
        } else if current_distance <= leniency {
            close.push(&self.key);
        }

        // Saturing just means that the values will not overflow
        for i in
            current_distance.saturating_sub(leniency)..=current_distance.saturating_add(leniency)
        {
            // Because of how the tree works, we can traverse based off the leniency
            if let Some(child) = self.children.get(&i) {
                let mut result = child.find(key, leniency);
                exact.append(&mut result.0);
                close.append(&mut result.1);
            }
        }
        // return our vector of close and exact values
        return (exact, close);
    }

    fn traverse<'a>(&'a self, mut out: &mut Vec<(&'a K, &'a V)>) {
        if self.children.len() > 0 {
            self.children
                .iter()
                .for_each(|(_, child)| child.traverse(&mut out));
        } else {
            out.push((&self.key, &self.value));
        }
    }
}

/// This trait is used by the BKTree to determine the distance between 2 objects
/// when fuzzy searching. An example of this for strings is the Levenshtein distance,
/// Damerau-Levenshtein distance, Optimal string alignment distance, or a custom implementation.
pub trait Distance {
    /// Used to determine the "distance" between two objects.
    fn distance(&self, other: &Self) -> usize;
}

// We want to implement distance for String, and OSA is a good way to do so.
// This allows us to create a BKTree using Strings
impl Distance for String {
    fn distance(&self, other: &Self) -> usize {
        osa_distance(self, other)
    }
}

impl Distance for &str {
    fn distance(&self, other: &Self) -> usize {
        osa_distance(self, other)
    }
}

// Manual implementation of this function. Did not want to include a seperate library.
// https://docs.rs/strsim/0.9.2/src/strsim/lib.rs.html#263-307
pub fn osa_distance(a: &str, b: &str) -> usize {
    let a_len = a.chars().count();
    let b_len = b.chars().count();

    if a == b {
        return 0;
    } else if a_len == 0 {
        return b_len;
    } else if b_len == 0 {
        return a_len;
    }

    let mut prev_two_distances = Vec::with_capacity(b_len + 1);
    let mut prev_distances = Vec::with_capacity(b_len + 1);
    let mut current_distances = Vec::with_capacity(b_len + 1);

    let mut prev_a_char = char::MAX;
    let mut prev_b_char = char::MAX;

    for i in 0..(b_len + 1) {
        prev_two_distances.push(i);
        prev_distances.push(i);
        current_distances.push(0);
    }

    for (i, a_char) in a.chars().enumerate() {
        current_distances[0] = i + 1;

        for (j, b_char) in b.chars().enumerate() {
            let cost = if a_char == b_char { 0 } else { 1 };
            current_distances[j + 1] = min(
                current_distances[j] + 1,
                min(prev_distances[j + 1] + 1, prev_distances[j] + cost),
            );

            if i > 0 && j > 0 && a_char != b_char && a_char == prev_b_char && b_char == prev_a_char
            {
                current_distances[j + 1] =
                    min(current_distances[j + 1], prev_two_distances[j - 1] + 1);
            }

            prev_b_char = b_char;
        }

        prev_two_distances.clone_from(&prev_distances);
        prev_distances.clone_from(&current_distances);
        prev_a_char = a_char;
    }

    current_distances[b_len]
}

#[cfg(test)]
mod tests {
    use super::*;

    static TEST_DATA: [(&'static str, &'static str); 7] = [
        ("AMERICAN SCRAP PROCESSING INC", "SCRAP PROCESSING INC"), // 0
        ("ACP ACQUISITION CORP", "CP ACQUISITION CORP"),           // 1
        ("ADAMANT TECHNOLOGIES", "NT TECHNOLOGIES, INC."),         // 2
        ("zehn", "fünfzehn"),                                     // 3
        (
            // 4
            "Genesis - The Carpet Crawlers",
            "Genesys - The carpett craulers",
        ),
        (
            // 5
            "Genesis - (The Lamb Lies Down on Broadway) The Carpet Crawlers",
            "Genesys - (The Lamb Lies Down on Broadway) The Chamber of 32 Doors",
        ),
        (
            // 6
            "Genesis - (The Lamb Lies Down on Broadway) The Lamia",
            "Genesis - The Lamia",
        ),
    ];

    #[test]
    fn osa_1() {
        assert_eq!(0, osa_distance(TEST_DATA[0].0, TEST_DATA[0].0));
        assert_eq!(9, osa_distance(TEST_DATA[0].0, TEST_DATA[0].1));
        assert_eq!(1, osa_distance(TEST_DATA[1].0, TEST_DATA[1].1));
        assert_eq!(11, osa_distance(TEST_DATA[2].0, TEST_DATA[2].1));
        assert_eq!(4, osa_distance(TEST_DATA[3].0, TEST_DATA[3].1));
        assert_eq!(5, osa_distance(TEST_DATA[4].0, TEST_DATA[4].1));
        assert_eq!(14, osa_distance(TEST_DATA[5].0, TEST_DATA[5].1));
        assert_eq!(33, osa_distance(TEST_DATA[6].0, TEST_DATA[6].1));
    }
}