1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
// MIT License // // Copyright (c) 2020 Ben // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. // // © 2020 GitHub, Inc. // Terms // https://github.com/tempor1s/bktree-rs use std::{char, cmp::min, collections::HashMap}; /// BKTree structure that is used to store word like structures /// and perform "fuzzy" search on them to implement "do you mean" /// functionality on them. Can perform said search on any term that implements /// the distance trait. The default implementation is Osa distance. #[derive(Default)] pub struct BKTree<K, V> where K: Distance, { root: Option<BKTreeNode<K, V>>, } impl<K, V> BKTree<K, V> where K: Distance, { /// Create a new BK Tree with an empty root. pub fn new() -> BKTree<K, V> { BKTree { root: None } } /// Create a new tree from the items in a Vector. /// Useful for inserting a lot of items from a file etc. /// Vector requires a Vec of tuples of K, V pairs where K implements Distance trait #[allow(dead_code)] pub fn new_from_vec(items: Vec<(K, V)>) -> BKTree<K, V> { let mut tree = BKTree { root: None }; for item in items { tree.insert(item.0, item.1); } return tree; } /// Add a new (key, value) pair into the BKTree. pub fn insert(&mut self, key: K, value: V) { // If the root exists, insert from there. if let Some(root) = &mut self.root { root.insert(key, value); } else { // otherwise, set the root to be a new BKTreeNode self.root = Some(BKTreeNode::new(key, value)); } } /// Search for the closest Item to the key with a given tolerence. (Steps to get there) /// The return value is a tuple of 2 Vecs, where the first one has exact matches and the second /// are matches within the given tolerence. /// /// A match is approximate if the distance between key1 and key2 are less than the given tolerence. pub fn find(&self, key: &K, tolerence: usize) -> (Vec<&V>, Vec<&K>) { // if our root exists, search from the root return if let Some(root) = &self.root { root.find(&key, tolerence) } else { // if we can not find anything, return a tuple of empty vectors (vec![], vec![]) }; } pub fn dfs(&self) -> Vec<(&K, &V)> { let mut out = vec![]; if let Some(ref root) = self.root { root.traverse(&mut out); } out } } #[derive(Debug)] struct BKTreeNode<K, V> where K: Distance, { key: K, value: V, children: HashMap<usize, BKTreeNode<K, V>>, } impl<K, V> BKTreeNode<K, V> where K: Distance, { /// Create a new BK Tree Node with the given (K, V) pair and empty HashMap of children fn new(key: K, value: V) -> Self { BKTreeNode { key, value, children: HashMap::new(), } } /// Insert a new (key, value) pair into this nodes children fn insert(&mut self, key: K, value: V) { // Get the distance between the current nodes key and the given key let distance = self.key.distance(&key); // If the child exists, traverse and insert from there. if let Some(child) = self.children.get_mut(&distance) { child.insert(key, value); } else { // otherwise, insert the current node into the children and with the given distance self.children.insert(distance, BKTreeNode::new(key, value)); } } /// Find a key in the given childrens nodes fn find(&self, key: &K, leniency: usize) -> (Vec<&V>, Vec<&K>) { // Create a new tuple of empty vectors for exact and close matches let (mut exact, mut close) = (vec![], vec![]); // Get the distance between the current nodes key and then passed in key. let current_distance = self.key.distance(&key); // If the current distance is 0, it means its an exact match so push it to our "exact" matches if current_distance == 0 { exact.push(&self.value); // Otherwise, if the value is less than our leniency then add it to the close matches } else if current_distance <= leniency { close.push(&self.key); } // Saturing just means that the values will not overflow for i in current_distance.saturating_sub(leniency)..=current_distance.saturating_add(leniency) { // Because of how the tree works, we can traverse based off the leniency if let Some(child) = self.children.get(&i) { let mut result = child.find(key, leniency); exact.append(&mut result.0); close.append(&mut result.1); } } // return our vector of close and exact values return (exact, close); } fn traverse<'a>(&'a self, mut out: &mut Vec<(&'a K, &'a V)>) { if self.children.len() > 0 { self.children .iter() .for_each(|(_, child)| child.traverse(&mut out)); } else { out.push((&self.key, &self.value)); } } } /// This trait is used by the BKTree to determine the distance between 2 objects /// when fuzzy searching. An example of this for strings is the Levenshtein distance, /// Damerau-Levenshtein distance, Optimal string alignment distance, or a custom implementation. pub trait Distance { /// Used to determine the "distance" between two objects. fn distance(&self, other: &Self) -> usize; } // We want to implement distance for String, and OSA is a good way to do so. // This allows us to create a BKTree using Strings impl Distance for String { fn distance(&self, other: &Self) -> usize { osa_distance(self, other) } } impl Distance for &str { fn distance(&self, other: &Self) -> usize { osa_distance(self, other) } } // Manual implementation of this function. Did not want to include a seperate library. // https://docs.rs/strsim/0.9.2/src/strsim/lib.rs.html#263-307 pub fn osa_distance(a: &str, b: &str) -> usize { let a_len = a.chars().count(); let b_len = b.chars().count(); if a == b { return 0; } else if a_len == 0 { return b_len; } else if b_len == 0 { return a_len; } let mut prev_two_distances = Vec::with_capacity(b_len + 1); let mut prev_distances = Vec::with_capacity(b_len + 1); let mut current_distances = Vec::with_capacity(b_len + 1); let mut prev_a_char = char::MAX; let mut prev_b_char = char::MAX; for i in 0..(b_len + 1) { prev_two_distances.push(i); prev_distances.push(i); current_distances.push(0); } for (i, a_char) in a.chars().enumerate() { current_distances[0] = i + 1; for (j, b_char) in b.chars().enumerate() { let cost = if a_char == b_char { 0 } else { 1 }; current_distances[j + 1] = min( current_distances[j] + 1, min(prev_distances[j + 1] + 1, prev_distances[j] + cost), ); if i > 0 && j > 0 && a_char != b_char && a_char == prev_b_char && b_char == prev_a_char { current_distances[j + 1] = min(current_distances[j + 1], prev_two_distances[j - 1] + 1); } prev_b_char = b_char; } prev_two_distances.clone_from(&prev_distances); prev_distances.clone_from(¤t_distances); prev_a_char = a_char; } current_distances[b_len] } #[cfg(test)] mod tests { use super::*; static TEST_DATA: [(&'static str, &'static str); 7] = [ ("AMERICAN SCRAP PROCESSING INC", "SCRAP PROCESSING INC"), // 0 ("ACP ACQUISITION CORP", "CP ACQUISITION CORP"), // 1 ("ADAMANT TECHNOLOGIES", "NT TECHNOLOGIES, INC."), // 2 ("zehn", "fünfzehn"), // 3 ( // 4 "Genesis - The Carpet Crawlers", "Genesys - The carpett craulers", ), ( // 5 "Genesis - (The Lamb Lies Down on Broadway) The Carpet Crawlers", "Genesys - (The Lamb Lies Down on Broadway) The Chamber of 32 Doors", ), ( // 6 "Genesis - (The Lamb Lies Down on Broadway) The Lamia", "Genesis - The Lamia", ), ]; #[test] fn osa_1() { assert_eq!(0, osa_distance(TEST_DATA[0].0, TEST_DATA[0].0)); assert_eq!(9, osa_distance(TEST_DATA[0].0, TEST_DATA[0].1)); assert_eq!(1, osa_distance(TEST_DATA[1].0, TEST_DATA[1].1)); assert_eq!(11, osa_distance(TEST_DATA[2].0, TEST_DATA[2].1)); assert_eq!(4, osa_distance(TEST_DATA[3].0, TEST_DATA[3].1)); assert_eq!(5, osa_distance(TEST_DATA[4].0, TEST_DATA[4].1)); assert_eq!(14, osa_distance(TEST_DATA[5].0, TEST_DATA[5].1)); assert_eq!(33, osa_distance(TEST_DATA[6].0, TEST_DATA[6].1)); } }